This study captured neurophysiological, muscular, and perceptual adaptations to shoulder exoskeleton use during overhead work with competing physical-cognitive demands. Twenty-four males and females, randomly divided into control and exoskeleton groups, performed an overhead reaching and pointing task over three days without (single task) and with (dual task) a working memory task. Task performance, electromyography (EMG), neural activity, heart rate, and subjective responses were collected. While task completion time reduced for both groups at the same rate over days, EMG activity of shoulder muscles was lower for the exoskeleton group for both tasks, specifically for females during the dual task. Dual task reduced the physiological benefits of exoskeletons and neuromotor strategies to adapt to the dual task demands differed between the groups. Neuromuscular benefits of exoskeleton use were immediately realized irrespective of cognitive demand, however the perceptual, physiological, and neural adaptations with exoskeleton use were task- and sex-specific.

Direct Link: https://doi.org/10.1016/j.apergo.2023.104097

Journal: Applied Ergonomics. 2023 Nov 1;113:104097.

Keywords: cognitive demand, exoskeleton, Heart Rate,

Applications: Heart Rate,

CamNtech Reference: AH23025

Back to Search Results

UK & International customers

CamNtech Ltd.
Manor Farm
Fenstanton
Cambridgeshire
PE28 9JD, UK

US customers

CamNtech Inc.
630 Boerne Stage Airfield,
Boerne,
Texas 78006,
USA

Copyright

© 2024 CamNtech Ltd and CamNtech Inc

Company information

Registered in England No. 2221302
VAT No: GB486 3019 34


Privacy Policy