Measuring trust is an important element of effective human-robot collaborations (HRCs). It has largely relied on subjective responses and thus cannot be readily used for adapting robots in shared operations, particularly in shared-space manufacturing applications. Additionally, whether trust in such HRCs differ under altered operator cognitive states or with sex remains unknown. This study examined the impacts of operator cognitive fatigue, robot reliability, and operator sex on trust symptoms in collaborative robots through both objective measures (i.e., performance, heart rate variability) and subjective measures (i.e., surveys). Male and female participants were recruited to perform a metal surface polishing task in partnership with a collaborative robot (UR10), in which they underwent reliability conditions (reliable, unreliable) and cognitive fatigue conditions (fatigued, not fatigued). As compared to the reliable conditions, unreliable robot manipulations resulted in perceived trust, an increase in both sympathetic and parasympathetic activity, and operator-induced reduction in task efficiency and accuracy but not precision. Cognitive fatigue was shown to correlate with higher fatigue scores and reduced task efficiency, more severely impacting females. The results highlight key interplays between operator states of fatigue, sex, and robot reliability on both subjective and objective responses of trust. These findings provide a strong foundation for future investigations on better understanding the relationship between human factors and trust in HRC as well as aid in developing more diagnostic and deployable measures of trust.

Direct Link: https://doi.org/10.1016/j.apergo.2022.103863

Journal: Applied Ergonomics. 2023 Jan 1;106:103863

Keywords: AH5, cognitive fatigue, ECG, gender, heart rate variability, human-robot collaboration, trust,

Applications: HRV,

CamNtech Reference: AH22036

Back to Search Results

UK & International customers

CamNtech Ltd.
Manor Farm
Fenstanton
Cambridgeshire
PE28 9JD, UK

US customers

CamNtech Inc.
630 Boerne Stage Airfield,
Boerne,
Texas 78006,
USA

Copyright

© 2022 CamNtech Ltd and CamNtech Inc

Company information

Registered in England No. 2221302
VAT No: GB486 3019 34


Privacy Policy